930=-16t^(2)+1900

Simple and best practice solution for 930=-16t^(2)+1900 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 930=-16t^(2)+1900 equation:



930=-16t^(2)+1900
We move all terms to the left:
930-(-16t^(2)+1900)=0
We get rid of parentheses
16t^2-1900+930=0
We add all the numbers together, and all the variables
16t^2-970=0
a = 16; b = 0; c = -970;
Δ = b2-4ac
Δ = 02-4·16·(-970)
Δ = 62080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{62080}=\sqrt{64*970}=\sqrt{64}*\sqrt{970}=8\sqrt{970}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{970}}{2*16}=\frac{0-8\sqrt{970}}{32} =-\frac{8\sqrt{970}}{32} =-\frac{\sqrt{970}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{970}}{2*16}=\frac{0+8\sqrt{970}}{32} =\frac{8\sqrt{970}}{32} =\frac{\sqrt{970}}{4} $

See similar equations:

| 3x-2^7=133 | | 3^(1-6x)=2^x | | 4(x-4)+2=6x-2(5+x) | | 3x-2x7=133 | | 2x+3+7x=24 | | 1.375=12,2.375=x | | 17x-19=8x+35 | | 21/3k+1/3k=-222/9 | | 10+5(2x-8)=20 | | 125m-75m+38,800=40,800-150m | | t÷9=7 | | 2(4-p)+3(2p+2)=5p+1+2 | | 3(y+1)y=2 | | 21x-5=2(7x-6)+7x+7 | | -6(1-k)=-(1-k) | | 64+2a=180 | | 7w/8=1w/2+3w/4 | | 7m−7−6m−16=1+4m | | -10v=-10−5v | | -5(6x-10)=10(12x-10 | | 6x-5(2-2x)=-20+6x | | 2(3x-3)=3(2+x) | | 15x=x+1 | | x^2-68x-64380=0 | | -6x+11=13 | | 3x/5=1/x+1 | | 12y+15+y-36y-9=y | | -14+4n=-(-6-3n) | | 2(-x-6)=-36+10x | | -7m−8=-3m | | 13x-28=8x+32 | | 1+2k=-4k+5k+3 |

Equations solver categories